tsp/maze/maze.go

270 lines
7.3 KiB
Go
Raw Normal View History

2024-04-10 01:04:22 -04:00
package maze
import (
"image"
"image/color"
"image/draw"
"math/rand"
)
type cell uint8
const (
// cellRight is set if movement to the right is allowed.
cellRight cell = 1 << iota
// cellDown is set if movement down is allowed.
cellDown
)
type Maze struct {
Size image.Rectangle
Start, End image.Point
// the cells in the maze, starting at size.Min and going left-to-right, top-to-bottom.
cells []cell
}
// if cells at i and j belong to different neighborhoods, they will be merged
// and true will be returned. Otherwise, false will be returned.
func tryJoinNeighborhoods(neighborhood []*[]int, i, j int) bool {
if aN, bN := neighborhood[i], neighborhood[j]; aN != bN {
// prefer the larger set absorbing the smaller set.
if len(*aN) < len(*bN) {
aN, bN = bN, aN
}
// aN is now the larger set, and bN is the smaller set.
// append the smaller set to the larger set.
*aN = append(*aN, *bN...)
// update the membership of the smaller set to point to the larger set.
for _, member := range *bN {
neighborhood[member] = aN
}
return true
}
return false
}
// Make creates a new maze of the given size, using the given random number generator.
//
// If r is nil, the default random number generator will be used.
func Make(size image.Rectangle, r *rand.Rand) Maze {
if size.Dx() <= 0 || size.Dy() <= 0 {
panic("invalid maze size")
}
if r == nil {
// create a new random number generator if
// one wasn't provided.
r = rand.New(rand.NewSource(rand.Int63()))
}
w, h := size.Dx(), size.Dy()
neighborhoods := make([]*[]int, w*h)
cells := make([]cell, w*h)
// each cell begins initially disconnected, alone in its own set.
for i := range cells {
neighborhoods[i] = &[]int{i}
}
// create a list of all edges in the maze.
// there are (w-1)*h horizontal edges, and w*(h-1) vertical edges.
// the first (w-1)*h edges are horizontal, and the rest are vertical.
edges := make([]int, (w-1)*h+w*(h-1))
for i := range edges {
edges[i] = i
}
// shuffle the list of edges, this will be the order in which we attempt to join cells.
r.Shuffle(len(edges), func(i, j int) {
edges[i], edges[j] = edges[j], edges[i]
})
// repeatedly join cells until all cells are in the same set.
for _, edge := range edges {
if edge < (w-1)*h {
// join right
// we need to convert the edge index into coordinates, and then back into a cell index.
i := edge%(w-1) + edge/(w-1)*w
if tryJoinNeighborhoods(neighborhoods, i, i+1) {
cells[i] |= cellRight
} else {
// already joined, skip to the next edge.
continue
}
} else {
// join down
// we can mostly use the edge index unmodified, we just need to subtract the length of the horizontal edges.
i := edge - (w-1)*h
if tryJoinNeighborhoods(neighborhoods, i, i+w) {
cells[i] |= cellDown
} else {
// already joined, skip to the next edge.
continue
}
}
// if we reach this point, then two neighborhoods were joined. If all cells are in the same neighborhood,
// then we can stop trying to merge the remaining edges.
if len(*neighborhoods[0]) == w*h {
break
}
}
var start, end image.Point
// choose a start and end point on opposite sides of the maze.
switch r.Intn(2) {
case 0: // left/right
start = image.Pt(0, r.Intn(h)).Add(size.Min)
end = image.Pt(w-1, r.Intn(h)).Add(size.Min)
case 1: // top/bottom
start = image.Pt(r.Intn(w), 0).Add(size.Min)
end = image.Pt(r.Intn(w), h-1).Add(size.Min)
}
if r.Intn(2) == 0 {
// swap start and end points.
start, end = end, start
}
return Maze{
Size: size,
Start: start,
End: end,
cells: cells,
}
}
func (m Maze) coordToIndex(p image.Point) int {
return p.X - m.Size.Min.X + (p.Y-m.Size.Min.Y)*m.Size.Dx()
}
// Returns true if you can move to the right from the given point.
func (m Maze) Right(p image.Point) bool {
return p.In(m.Size) && m.cells[m.coordToIndex(p)]&cellRight != 0
}
// Returns true if you can move down from the given point.
func (m Maze) Down(p image.Point) bool {
return p.In(m.Size) && m.cells[m.coordToIndex(p)]&cellDown != 0
}
// Returns true if you can move to the left from the given point.
func (m Maze) Left(p image.Point) bool {
return m.Right(p.Sub(image.Pt(1, 0)))
}
// Returns true if you can move up from the given point.
func (m Maze) Up(p image.Point) bool {
return m.Down(p.Sub(image.Pt(0, 1)))
}
// Returns a drawing of the maze, mostly for debugging purposes.
// An optional path can be drawn on top of the maze.
func (m Maze) Draw(path []image.Point) *image.RGBA {
const cellSize = 16
const markerRadius = 4 // the radius of the start and end markers.
const wallRadius = 2 // half the thickness of the wall lines.
const pathRadius = 2 // half the thickness of the path line.
backgroundColor := image.NewUniform(color.Black)
wallColor := image.NewUniform(color.White)
startColor := image.NewUniform(color.RGBA{0, 255, 0, 255})
endColor := image.NewUniform(color.RGBA{255, 0, 0, 255})
pathColor := image.NewUniform(color.RGBA{0, 0, 255, 255})
leftWall := image.Rect(0, 0, 0, cellSize).Inset(-wallRadius)
topWall := image.Rect(0, 0, cellSize, 0).Inset(-wallRadius)
rightWall := leftWall.Add(image.Pt(cellSize, 0))
bottomWall := topWall.Add(image.Pt(0, cellSize))
marker := image.Rect(cellSize/2-markerRadius, cellSize/2-markerRadius, cellSize/2+markerRadius, cellSize/2+markerRadius)
img := image.NewRGBA(image.Rect(0, 0, m.Size.Dx()*cellSize+wallRadius*2, m.Size.Dy()*cellSize+wallRadius*2))
// fill the entire image with the background color.
draw.Draw(img, img.Bounds(), backgroundColor, image.Point{}, draw.Src)
for y := m.Size.Min.Y; y < m.Size.Max.Y; y++ {
for x := m.Size.Min.X; x < m.Size.Max.X; x++ {
p := image.Pt(x, y)
cellP := p.Sub(m.Size.Min).Mul(cellSize).Add(image.Pt(wallRadius, wallRadius))
draw := func(rect image.Rectangle, color *image.Uniform) {
draw.Draw(img, rect.Add(cellP), color, image.Point{}, draw.Src)
}
if p == m.Start {
draw(marker, startColor)
}
if p == m.End {
draw(marker, endColor)
}
if !m.Right(p) {
draw(rightWall, wallColor)
}
if !m.Down(p) {
draw(bottomWall, wallColor)
}
if !m.Left(p) {
draw(leftWall, wallColor)
}
if !m.Up(p) {
draw(topWall, wallColor)
}
}
}
if len(path) > 1 {
pathDrawOffset := image.Pt(cellSize/2+wallRadius, cellSize/2+wallRadius)
draw := func(i, j int) {
// fake drawing a line between the two points by treating them as points
// of a rectangle, and drawing that rectangle instead.
//
// this only works because we're assuming there are no diagonal movements.
rect := image.Rectangle{
path[i].Sub(m.Size.Min).Mul(cellSize),
path[j].Sub(m.Size.Min).Mul(cellSize),
}.Canon().Inset(-pathRadius).Add(pathDrawOffset)
draw.Draw(img, rect, pathColor, image.Point{}, draw.Src)
}
start := 0
// cheating by assuming adjacent points in the path are adjacent cells,
// and movements are only horizontal or vertical.
for i := 1; i < len(path); i++ {
if path[start].X == path[i].X || path[start].Y == path[i].Y {
// while points are on the same horizontal or vertical line,
// skip the intermediate points.
continue
}
// all the points before this one were on the same line, so draw them
// as a single line.
draw(start, i-1)
start = i - 1
}
// any remaining points we haven't drawn yet are also on the same line.
draw(start, len(path)-1)
}
return img
}